Acta Cryst. (1976). B32, 1738

Délocalisation Electronique et Liaisons Hydrogène en Série β Naphtoquinonique

PAR FRANÇOISE BECHTEL, DANIEL CHASSEAU, JACQUES GAULTIER ET CHRISTIAN HAUW

Laboratoire de Cristallographie et de Physique Cristalline associé au CNRS, Université de Bordeaux I, 351 covrs de la Libération, 33405 Talence, France

(Reçu le 23 octobre 1975, accepté le 12 décembre 1975)

The 4-amino-1,2-naphthoquinone derivatives reported in this paper exhibit the conformation of a statistical molecule resulting from two tautomeric forms: 4-amino-1,2-naphthoquinone and 2-hydroxy-4-imino-1,2-naphthoquinone. The hypothesis of equilibrium between the two tautomeric forms, and the existence of an intermolecular resonance form are rejected. The explanation given is based upon the prominent part played by the presence of non-bonded electrons on the nitrogen atom and by the dipolar interactions; the intermolecular hydrogen bonds have only a minor importance. The crystal structures of the six compounds have been determined by three-dimensional X-ray analysis. These structures consist of piles of parallel molecules which overlap each other as in the α -naphthoquinonic series.

3

Introduction

L'objet de cette recherche fut, à l'origine, l'examen d'une possible tautomérie céto-énolique souvent évoquée en série naphtoquinonique.

Si en série α naphtoquinonique aucune modification des longueurs de liaison pouvant rendre compte d'un équilibre tautomérique ne fut décelée, en revanche en série β une perturbation notoire de l'enchaînement quinonique fut mise en évidence: les longueurs de liaison sont intermédiaires entre celles de l'amino-4 naphtoquinone-1,2 et de l'hydroxy-2 imino-4 naphtoquinone-1,2. Elles pourraient être un indice révélant l'existence d'un tel équilibre.

Si l'on ajoute que d'anciennes études de potentiel d'oxydo-réduction des solutions quinoniques à divers *p*H avaient conclu à l'absence probable de tautomérie, il parut nécessaire de chercher une explication dans l'organisation structurale de ces composés. Nous avons donc entrepris l'étude structurale des dérivés: (1) la bromo-3 amino-4 naphtoquinone-1,2, Br₃(NH₂)₄NQ-1,2, (2) la bromo-3 amino-4 naphtoquinone-1,2 hydratée, Br₃(NH₂)₄NQ-1,2, H₂O, (3) la bromo-3 amino-4 naphtoquinone-1,2 et méthanol, Br₃(NH₂)₄NQ-1,2, CH₃OH, (4) la méthyl-3 amino-4 naphtoquinone-1,2 hydratée, Me₃(NH₂)₄NQ-1,2, H₂O, (5) la diéthyl amino-4 naphtoquinone-1,2, (N, 2C₂H₅)₄NQ-1,2, (6) la diméthyl amino-4 naphtoquinone-1,2,

 $(N, 2CH_3)_4NQ-1, 2.$

Parallèlement à la perturbation dont nous venons de

parler, l'enchaînement quinonique manifeste, cette fois dans les deux séries, une autre déformation; les atomes qui le constituent présentent des écarts à la symétrie plane de la molécule libre. Nous nous sommes donc attachés, au cours de cette étude, à donner également une explication de ce phénomène général aux naphtoquinones α et β .

Le choix que nous avons fait des structures, notamment la possibilité de connaître une même molécule (dérivé bromé) dans différentes organisations cristallines, la possibilité d'apprécier l'influence des liaisons H intermoléculaires (dérivé diéthylé et diméthylé), doit apporter de nouveaux éléments d'information.

Partie expérimentale

Les principales données cristallographiques sont résumées dans les Tableaux 1 et 2.

Les mesures des intensités diffractées de ces composés ont été réalisées sur un diffractomètre automatique Siemens avec le rayonnement $K\alpha$ du cuivre. La détermination des structures a été conduite de deux façons différentes selon que la structure présentait ou ne présentait pas d'atome de numéro atomique élevé.

Les trois formes de bromo-3 amino-4 naphtoquinone-1,2 furent déterminées par la méthode classique de l'atome lourd (Chasseau, Gaultier & Hauw, 1970; Chasseau & Bravic, 1971).

L'hydrate de méthyl-3 amino-4 naphtoquinone-1,2 (Chasseau *et al.*, 1970) ainsi que la diéthyl et diméthyl amino-4 naphtoquinone (Bechtel, Gaultier, Geoffre & Hauw, 1975; Bechtel, Gaultier, Hauw & Chasseau, 1975) furent trouvées par une procédure statistique, l'addition symbolique.

L'affinement des coordonnées atomiques et des facteurs d'agitation thermique a été réalisé par méthode de moindres carrés selon le schéma simplifié des blocs diagonaux. Distances et angles sont donnés dans les Figs. 1 et 2. Les atomes d'hydrogène ont été placés sur

		Table	u 1. Donnée.	s cristallograpi	hiques						
			Paramètres	de la maille (Å)	et (°) et éca	rts-type		Groupe			
	Système	а	p	c	8	β	٨	spatial	F(000)	N	[R
Br ₃ (NH ₂)4NQ-1,2 (I)	Monoclinique	3,858 (2)	16,676 (4)	13,835 (4)		98,82 (2)	1	$P2_1/c$	496	4	0,040
Me ₃ (NH ₂) ₄ NQ-1,2. H ₂ O (II)	Orthorhombique	4,586 (2)	14,235 (5)	29,751 (10)			1	Pbca	864	×	0,063
$Br_3(NH_2)ANQ-1,2$. H ₂ O (III)	Monoclinique	14,378 (4)	4,830 (2)	14,311 (4)	ł	98,09 (2)	I	$P2_1/c$	536	4	0,054
$Br_3(NH_2)_4NQ-1,2.CH_3OH$ (IV)	Monoclinique	16,190 (8)	4,771 (3)	14,235 (5)	1	97,73 (4)	1	$P2_1/c$	568	4	0.045
(N, 2C ₂ H ₅) ₄ NQ-1,2 (V)	Triclinique	11,115 (4)	8,343 (3)	7,087 (3)	93,27 (5)	80,97 (5)	114,30 (5)	$P\overline{1}$	244	6	0,042
(N, 2CH3)4NQ-1,2 (VI)	Monoclinique	8,443 (3)	12,828 (4)	10,727 (4)	.	122,94 (5)	: .	$P2_{i}/c$	424	4	0,037

série différence, en particulier ceux des molécules d'eau ou de méthanol, du groupement NH_2 qui participent aux liaisons hydrogène. Les facteurs de diffusion atomique utilisés sont extraits de *International Tables for X-ray Crystallography* (1968) pour les atomes de brome, carbone, azote et oxygène, et des valeurs de Stewart, Davidson & Simpson (1965) pour les atomes d'hydrogène.*

Nous présentons les phénomènes généraux affectant les six composés de la série β -naphtoquinonique sans analyser de façon détaillée la géométrie des structures et les conformations. Nous ferons souvent référence, lors de cette étude, à l'analyse d'un autre composé de structure connue: l'amino-4 naphtoquinone-1,2 hémihydratée (Aimé, Gaultier & Hauw, 1970).

Organisation cristalline

L'arrangement général des molécules observé à l'état cristallin peut être décrit à partir de deux facteurs essentiels: les liaisons de superposition et les liaisons localisées (liaisons hydrogène, en particulier).

(i) Liaisons de superposition

Il est désormais établi que l'organisation par recouvrement est un caractère spécifique des molécules de la série des naphtoquinones (Gaultier & Hauw, 1969). La superposition résulte le plus souvent d'une translation courte du réseau et les distances interplanaires varient de 3,10 Å pour la diéthyl amino naphtoquinone-1,2 où le recouvrement est faible à 3,53 Å pour la bromo-3 naphtoquinone-1,2 où le recouvrement est plus important. La présence d'inclusion dans les divers composés affecte le type de superposition. Les structures de naphtoquinone-1,2 peuvent être classées en deux groupes:

Groupe A comprenant les composés avec inclusion: ce mode de recouvrement est l'un des deux modes de la série des naphtoquinones-1,4 (Fig. 3). Il y a recouvrement important des cycles phényle et quinone: le substituant en position 3, quand il existe, se place au dessus de la liaison C(4)-C(10) à des distances courtes $(d \simeq 3,59$ Å dans le cas du brome).

Groupe *B* comprenant les composés sans inclusion. Il y a superposition d'un groupement carbonyle C=O à un cycle quinonique ou plus exceptionnellement à un cycle phényle (cas de la diéthyl amino naphtoquinone-1,2) avec possibilité de recouvrement des cycles phényle et quinone (Fig. 4). Ces modes de recouvrement ont été observés dans la série des naphtoquinones-1,4 [diméthyl-2,3 naphtoquinone-1,4, Breton-Lacombe (1966), naphtoquinone-1,4, Gaultier & Hauw (1965)].

^{*} Les listes des facteurs de structure ont été déposées au dépôt d'archives de la British Library Lending Division (Supplementary Publication No. SUP 31559: 99 pp., 2 microfiches). On peut en obtenir des copies en s'adressant à: The Executive Secretary, International Union of Crystallography, 13 White Friars, Chester CH1 1NZ, Angleterre.

Ce type d'organisation cristalline par empilement des molécules en colonnes à axes parallèles, est général à la série des naphtoquinones. Il rend compte de l'existence de liaisons de superposition.

(ii) Enchaînements moléculaires par liaisons hydrogène

Dans les quatre premières structures, les molécules sont liées entre elles par liaisons hydrogène établies entre l'atome d'azote du groupement amine et l'atome d'oxygène du groupement cétonique C(2)-O(2).

Ces liaisons sont constituées en 'periodic bonding chains' dont le vecteur a pour direction moyenne celle du glissement.

Ces liaisons caractérisées par les distances $N \cdots O$ et $H \cdots O$, et les angles $N-H \cdots O$, sont relativement fortes.

Tableau 2. Positions atomiques

(I) Bromo-3 amino-4 naphtoquinone-1,2 anhydre

	×	Y	z	81/811	822	833	B12	813	823
C (1)	,8295 (19)	.3394 (4)	,0063 (4)	526 (57)	26 (2)	28 (3)	-2 (18)	+42 (21)	13 (4)
C (2)	,9354 (17)	.2531 (4)	-,0080 (4)	431 (56)	29 (2)	26 (3)	-4 (18)	-36 (20)	5 (4)
C (3)	1.1368 (17)	.2144 (4)	0731 (4)	417 (53)	26 (2)	28 (3)	2 (17)	-15 (20)	0 (4)
C (4)	1,2437 (16)	.2514 (3)	.1621 (4)	300 (49)	27 (2)	25 (3)	-10 (16)	-19 (19)	14 (4)
C (5)	1,2532 (19)	. 3/63 (4)	,2653 (4)	507 (61)	33 (*)	27 (3)	-35 (19)	13 (21)	-1 (4)
C (6)	1,1652 (21)	.4553 (4)	.2760 (5)	750 (69)	32 (3)	41 (4)	-21 (22)	10 (26)	-11 (5)
C (7)	.9744 (22)	.4978 (4)	1994 (5)	763 (70)	26 (2)	50 (4)	18 (22)	34 (27)	-5 (5)
C (8)	.8722 (19)	.4600 (4)	.1118 (4)	531 (59)	28 (2)	40 (3)	17 (19)	-12 (23)	10 (5)
C (9)	.9547 (17)	.3801 (3)	.0995 (4)	463 (54)	24 (2)	25 (3)	-11 (17)	-13 (19)	6 (4)
C (10)	1.1527 (17)	.3366 (3)	.1764 (4)	347 (51)	25 (2)	24 (3)	-25 (16)	3 (19)	7 (4)
0 (11)	.0354 (15)	.3727 (3)	0603 (3)	909 (53)	33 (2)	40 (3)	71 (16)	=180 (20)	9 (3)
0 (12)	.8441 (14)	.2210 (3)	0886 (3)	751 (45)	37 (2)	27 (2)	34 (16)	-109 (16)	-12 (3)
BR(13)	1.2566 (2)	1062 (0)	.0559 (0)	724 (4)	27 (0)	45 (0)	51 (2)	-27 (2)	-2 (1)
N (14)	1.4343 (17)	2131 (3)	2358 (3)	751 (54)	29 (2)	27 (1)	34 (18)	-80 (20)	• () >
H (15)	1 3557 (233)	3481 (44)	2172 (5/)		2, (2)	27 (37	30 (107	-00 (20)	0 (4)
H (14)	1 2584 (218)	(843 (44)	7/51 (54)	2.2					
H (17)	9037 (221)	.4003 (44/	2008 (57)	5.0					
H (19)	7799 (221)		.2090 (33)	2.2					
H (10)	./300 (219)	.4840 (45)	.0684 (52)	2.2					
H (19)	1.5260 (226)	,1019 (44)	,2260 (54)	s.s					
H (20)	1,4661 (223)	.2350 (44)	,2896 (53)	5.5					

(II) Méthyl-3 amino-4 naphtoquinone-1,2 hydratée

	x	۲	z	81/811	B22	833	B12	B13	823
c (1)	.1786 (11)	0015 (3)	.0971 (2)	577 (3C)	31 (2)	13 (1)	16 (15)	12 (8)	-1 (2)
C (2)	.3797 (11)	.0128 (3)	.1396 (2)	553 (27)	30 (2)	12 (1)	4 (14)	12 (8)	2 (2)
C (3)	.3897 (11)	1025 (3)	1592 (1)	528 (27)	33 (2)	11 (1)	-16 (14)	6 (7)	0 (2)
C (4)	.2366 (12)	.1770 (3)	1411 (1)	525 (25)	31 (2)	11 (1)	-13 (13)	24 (7)	-2 (2)
C (5)	1311 (11)	.2406 (3)	.0858 (2)	577 (28)	34 (2)	13 (1)	-21 (15)	16 (8)	1 (2)
C (6)	3205 (11)	.2271 (3)	.0496 (2)	591 (32)	44 (2)	12 (1)	46 (16)	-2 (8)	6 (2)
C (7)	3395 (12)	.1399 (3)	.0291 (2)	564 (30)	52 (3)	11 (1)	-22 (17)	1 (3)	2 (2)
C (8)	-,1776 (12)	.0657 (3)	.0457 (2)	613 (32)	41 (2)	12 (1)	-19 (16)	1 (8)	-3 (2)
C (9)	.0073 (11)	.0776 (3)	.0818 (1)	529 (27)	33 (2)	10 (1)	-20 (14)	18 (7)	-1 (2)
C (10)	.D325 (11)	.1662 (3)	.1024 (1)	536 (28)	30 (2)	11 (1)	-13 (13)	24 (7)	-3 (2)
0 (11)	.1654 (10)	0793 (2)	.0820 (1)	939 (30)	33 (2)	19 (1)	55 (13)	-66 (7)	-12 (2)
0 (12)	.5227 (9)	0568 (2)	.1518 (1)	786 (25)	34 (2)	18 (1)	50 (12)	-31 (7)	2 (2)
C (13)	.5807 (13)	1157 (3)	1996 (2)	657 (33)	50 (3)	12 (1)	-2 (18)	-22 (8)	-2 (2)
N (14)	.2604 (10)	.2626 (2)	.1588 (1)	687 (25)	32 (2)	13 (1)	-32 (13)	-16 (7)	-6 (2)
0 (15)	.6427 (9)	.3685 (3)	.2221 (1)	668 (26)	72 (2)	13 (0)	-119 (13)	-1 (5)	2 (2)
H (16)	.4222 (92)	.2714 (27)	.1821 (12)	3.9					• •••
H (17)	.1427 (98)	.3136 (29)	.1477 (13)	4.9					
н (19)	.6964 (115)	.0659 (32)	2059 (15)	6.0					
н (19)	.7414 (111)	.1544 (29)	.1940 (13)	4.9					
н (20)	.4839 (120)	.1395 (32)	.2266 (14)	6.2					
H (21)	.6082 (87)	.3702 (22)	2454 (13)	2.7					
н (22)	.7333 (111)	.3972 (30)	.1988 (14)	5.1					
н (25)	1310 (*1)	.3017 (24)	.0980 (11)	2.6					
н (26)	4532 (92)	.2823 (26)	.0406 (12)	3.6					
н (27)	5007 (96)	.1281 (27)	.0040 (13)	3.6					
н (28)	2012 (9%)	.0005 (28)	.0351 (12)	4.1					

(III) Bromo-3 amino-4 naphtoquinone-1,2 hydratée

	x	۲	Z	BI/B11	B22	в33	812	B13	823
C (1)	.3043 (8)	.6593 (29)	.4715 (7)	40 (6)	396 (71)	24 (5)	-12 (35)	-2 (8)	9 (31)
C (2)	.2229 (8)	.8578 (27)	.4437 (7)	44 (6)	312 (63)	20 (4)	-38 (35)	5 (8)	19 (30)
C (3)	.1845 (8)	(85) 6088.	.3511 (7)	40 (6)	333 (63)	22 (5)	-10 (34)	6 (8)	9 (30)
C (4)	.2180 (7)	.7316 (23)	.2794 (7)	34 (5)	253 (59)	17 (4)	-41 (27)	1 (8)	11 (24)
C (5)	.3280 (8)	.3680 (29)	.2318 (7)	49 (6)	346 (66)	25 (5)	-21 (38)	12 (9)	-12 (33)
C (6)	.3971 (7)	.1756 (28)	2557 (9)	50 (7)	301 (74)	43 (7)	10 (35)	23 (11)	-41 (34)
C (7)	4410 (8)	1487 (29)	.3483 (9)	43 (6)	290 (68)	48 (7)	14 (36)	13 (10)	20 (30)
C (8) J	4096 (9)	3049 (27)	.4185 (8)	44 (7)	311 (75)	39 (6)	-2 (33)	1 (10)	40 (31)
C (9)	.3367 (8)	4926 (26)	.3955 (7)	44 (7)	291 (62)	23 (5)	-80 (31)	6 (9)	16 (27)
C (10)	.2940 (8)	.5283 (24)	.3020 (7)	42 (6)	219 (60)	25 (5)	-11 (29)	9 (9)	10 (20)
0 (11)	.3398 (7)	.6424 (25)	.5532 (5)	67 (5)	777 (57)	23 (4)	173 (30)	-10 (7)	-20 (29)
0 (12)	.1972 (6)	.9972 (21)	.5125 (5)	66 (6)	529 (55)	20 (4)	110 (29)	2 (7)	-24 (23)
BR (13)	.0840 (1)	1.1324 (3)	.3204 (1)	43 (1)	414 (7)	37 (1)	31 (4)	5 (1)	16 (4)
N (14)	.1829 (7)	.7691 (22)	.1702 (5)	48 (6)	375 (57)	18 (4)	3 (28)	2 (8)	14 (23)
0 (15)	.0649 (7)	3574 (27)	.5692 (7)	73 (7)	744 (72)	46 (5)	61 (39)	-11 (9)	-122 (35)
н (16)	.3074 (88)	3554 (314)	1672 (88)	5.0					
H (17)	.4139 (92)	.0572 (294)	.2128 (89)	5.0					
H (18)	.486D (9D)	0335 (292)	.3644 (90)	5.0					
н (19)	.4384 (9C)	2588 (295)	4873 (92)	5.0					
H (2D)	.1301 (91)	.8087 (298)	.1847 (91)	5.0					
H (21)	.1975 (89)	.6520 (304)	.1589 (38)	5.0					
H (22)	.0826 (92)	,1905 (3)2)	.5388 (39)	5.1					

Tableau 2 (suite)

(IV) Br	omo-3 amino	-4 naphtoquii	none-1,2 et mé	thanol					
	x	۲	Z	BI/811	822	835	812	813	825
C (1) C (2) C (3) C (4) C (5) C (6) C (6) C (7) C (7) C (7) C (7) C (10) O (11) BR(13) N (11) BR(13) N (15) C (16) H (17) H (18) H (20) H (22) H (23) H (25) H (26)	.3240 (3) .2159 (3) .2461 (3) .2461 (3) .4095 (3) .4188 (3) .5552 (3) .3153 (3) .35569 (2) .2285 (2) .1235 (2) .1235 (2) .1235 (2) .12444 (4) .5206 (39) .4298 (37) .4414 (39) .1761 (39) .1761 (39) .2726 (46) .0726 (46) .0110 (47)	$\begin{array}{c} .6667 & (9) \\ .8666 & (9) \\ .8714 & (9) \\ .7778 & (9) \\ .7778 & (9) \\ .3497 & (10) \\ .1629 & (10) \\ .1629 & (10) \\ .3073 & (10) \\ .49722 & (9) \\ .5163 & (9) \\ .5163 & (9) \\ .5163 & (9) \\ .5163 & (9) \\ .5163 & (9) \\ .6113 & (10) \\ 1.4796 & (17) \\ .4796 & (17) \\ .4796 & (13) \\ .540 & (148) \\ .2933 & (137) \\ .6159 & (139) \\ .6153 & (137) \\ .6759 & (139) \\ 1.5392 & (171) \\ .6258 & (153) \\ 1.4654 & (163) \\ \end{array}$	$\begin{array}{c} -0228 & (3) \\ -0185 & (3) \\ 00525 & (3) \\ .1472 & (3) \\ .2166 & (3) \\ .3555 & (3) \\ .0579 & (3) \\ .0513 & (3) \\ .0513 & (3) \\ .0513 & (3) \\ .0644 & (2) \\ .0645 & (0) \\ .2265 & (2) \\ .2265 & (2) \\ .2752 & (45) \\ .1530 & (44) \\ .2334 & (44) \\ .2334 & (44) \\ .2334 & (44) \\ .2334 & (44) \\ .2334 & (44) \\ .2334 & (44) \\ .2334 & (44) \\ .2334 & (44) \\ .2334 & (44) \\ .2334 & (44) \\ .2334 & (45) \\ .1530 & (54) \\ .1648 & (54) \\ .2004 & (53) \\ \end{array}$	$\begin{array}{c} 51 & (2) \\ 32 & (2) \\ 26 & (2) \\ 355 & (2) \\ 355 & (2) \\ 311 & (2) \\ 29 & (2) \\ 40 & (2) \\ 44 & (2) \\ 44 & (2) \\ 455 & (0) \\ 355 & (2) \\ 556 & (2) \\ 556 & (2) \\ 4.0 \\ $	362 (21) 313 (20) 332 (20) 299 (19) 347 (21) 373 (23) 355 (22) 364 (22) 294 (19) 265 (18) 640 (26) 461 (17) 466 (2) 383 (18) 667 (25) 874 (45)	222 (2) 233 (2) 254 (2) 255 (2) 259 (2) 359 (2) 358 (2) 358 (2) 358 (2) 352 (2) 257 (2) 359 (0) 277 (2) 658 (4)	$\begin{array}{c} -12 & (10) \\ -18 & (10) \\ -9 & (11) \\ -31 & (10) \\ -5 & (12) \\ -9 & (13) \\ -14 & (12) \\ -25 & (10) \\ -31 & (10) \\ -53 & (9) \\ 60 & (1) \\ 60 & (1) \\ 60 & (10) \\ 72 & (13) \\ 95 & (22) \end{array}$	16 (3) 8 (3) 15 (3) 12 (3) 9 (3) 21 (3) 11 (3) 18 (3) 15 (3) 21 (2) 21 (0) 22 (3) 57 (5)	-9 (10) -10 (10) -15 (9) -15 (9) -11 (10) 26 (11) -26 (11) -24 (10) -21 (9) -25 (9) -25 (9) -25 (9) -25 (10) -26 (11) -26 (11) -25 (10) -25
(V) Dié	thyl amino-4	naphtoquinor	ne-1,2						
C (A)	X	Y	Z	8I/B11	822	B 3 3	812	813	825
С (1) С (2) С (2) С (3) С (4) С (5) С (7) С (7)	. 3597 (2) . 2329 (3) . 1688 (2) . 2124 (2) . 4172 (3) . 4844 (2) . 4844 (2) . 3886 (2) . 3111 (2) . 4299 (2) . 1914 (2) . 1018 (2) . 2018 (3) . 0926 (4) . 1728 (3) . 0955 (24) . 4055 (24) . 6533 (24) . 6533 (24) . 6533 (24) . 6557 (27) . 6134 (25) . 6557 (27) . 6134 (25) . 6557 (27) . 6134 (25) . 6257 (27) . 6134 (25) . 6134 (25) . 6134 (25) . 6134 (25) . 6134 (25) . 6134 (25) . 6144 (25) . 6157 (27) . 6157 (27) . 6157 (23) . 7199 (23)	.3194 (3) .1889 (3) .2561 (3) .4322 (3) .8535 (3) .6010 (3) .6281 (3) .5082 (3) .5082 (3) .5082 (3) .5077 (2) .0312 (2) .4892 (3) .5595 (4) .6485 (3) .2600 (4) .7731 (4) .1652 (31) .7738 (32) .8531 (38) .8531 (38) .5835 (33) .2754 (33) .5037 (35) .6037 (32) .6037	6944 (4) 6944 (4) 5117 (4) 4709 (3) 6707 (4) 77150 (4) 77150 (4) 6818 (3) 7830 (4) 6818 (3) 7864 (3) 7864 (3) 7864 (3) 2501 (4) 28667 (5) 28667 (5) 28667 (5) 28666 (45) 8868 (35) 28666 (45) 28666 (45) 28666 (45) 28666 (45) 28667 (35) 2867 (35) 2667 (35) 2667 (35) 2667 (35) 2667 (35) 2667 (35) 2667 (35) 2666 (32) 23375 (33)	97 (3) 104 (3) 95 (3) 11 (3) 124 (3) 124 (3) 109 (3) 77 (2) 139 (2) 135 (3) 74 (2) 88 (3) 93 (3) 109 (5) 133 (4) 4.9 (4) 5.6 (4) 4.8 (2) 5.3 (3) 6.0 (4) 5.2 (7.1 7.3 (6) 6.6 (5) 6.7 (6)	148 (5) 119 (4) 132 (5) 148 (5) 135 (5) 116 (4) 138 (5) 127 (4) 123 (4) 173 (4) 204 (6) 193 (5) 271 (8) 241 (7)	188 (6) 236 (6) 242 (7) 176 (6) 237 (7) 209 (6) 168 (5) 174 (5) 331 (5) 264 (7) 264 (7) 257 (8) 332 (9)	129 (6) 89 (6) 74 (6) 87 (6) 85 (6) 85 (6) 85 (6) 85 (5) 79 (5) 78 (5) 67 (7) 90 (10) 146 (9)	-26 (6) -30 (7) -74 (7) -10 (6) -57 (8) -95 (7) -17 (6) -15 (6) -15 (6) -142 (6) -142 (6) -153 (5) -109 (7) -39 (7) -39 (7) -128 (10)	-5 (8) -29 (9) -43 (9) -13 (8) 5 (8) 5 (23 (9) -28 (9) 6 (8) 1 (8) 3 (7) 13 (7) 13 (7) 14 (7) 17 (10) 15 (9) -100 (13) 128 (12)
(VI) Di	méthyl amino	-4 naphtoqui	none-1,2						
c (1)	X 2951 (1)	Y	Ζ	BI/B11	822	833	812	813	823
C (3) C (4) C (4) C (5) C (6) C (7) C (7) C (7) C (7) C (10) C (10) C (12) C (10) C (12) C (10) C (12) C (10) C (12) C (10) C (1	- 1494 (3) - 1494 (3) - 0409 (3) - 8008 (3) - 8008 (3) - 5259 (3) - 7761 (3) - 2212 (3) - 2212 (3) - 2327 (3) - 2327 (3) - 2327 (3) - 2327 (3) - 2327 (4) - 1257 (4) - 2322 (31) - 2468 (32) - 2663 (34) - 0766 (33) - 2266 (35) - 226	. 0500 (2) .1200 (2) .1027 (2) .0169 (2) 1287 (2) 1951 (2) 1919 (2) 1174 (2) 0586 (2) .0566 (2) .0566 (1) .0566 (1) .0645 (2) 1031 (2) .1490 (17) 2412 (18) 0772 (18) .0972 (19) 1158 (19) .0526 (20) .0646 (18)	.0348 (2) .5370 (2) .3817 (2) .3418 (2) .2410 (3) .4286 (3) .6453 (3) .6453 (3) .6042 (2) .7690 (2) .5981 (2) .1665 (2) .0740 (3) .1010 (3) .2327 (22) .8413 (25) .7499 (24) .0272 (25) .0270 (25) .0272 (25) .0272 (25) .017 (24)	119 (5) 142 (5) 121 (5) 123 (5) 167 (5) 188 (6) 143 (5) 108 (5) 108 (5) 117 (5) 180 (4) 271 (5) 156 (4) 207 (6) 196 (6) 4.1 3.6 4.5 5.7 4.9 5.4 3.9 5.3 6.4 4.9 5.0	66 (2) 51 (1) 47 (1) 53 (2) 57 (2) 66 (2) 51 (1) 102 (2) 65 (1) 75 (1) 78 (2) 71 (2)	89 (3) 108 (3) 101 (3) 81 (3) 123 (3) 195 (4) 173 (4) 112 (3) 92 (3) 101 (3) 83 (2) 137 (3) 76 (2) 95 (3) 111 (3)	-48 (5) -30 (5) 14 (4) -20 (4) -18 (5) 27 (5) -6 (5) -21 (4) -10 (4) -18 (4) -10 (4) -32 (6)	105 (6) 137 (7) 105 (6) 101 (6) 168 (7) 254 (9) 150 (8) 89 (6) 126 (6) 78 (5) 79 (5) 76 (7) 132 (7)	-14 (4) -21 (4) 9 (3) -2 (4) 14 (4) 47 (4) 47 (4) 36 (4) 13 (3) 9 (3) -29 (3) -29 (3) -51 (3) 39 (4) -46 (4)

	N···O	H···O	N−H···O
(NH ₂) ₄ NQ-1,2. ¹ / ₂ H ₂ O	2,84 (Å)	2,05 (Å)	155°
$Me_{3}(NH_{2})_{4}NQ-1,2.H_{2}O$	2,89	2,00	170
$Br_3(NH_2)_4NQ-1,2H_2O$	2,88	2,22	145
Br ₃ (NH ₂) ₄ NQ-1,2 CH ₃ OH	2,87	2,09	148
Br ₃ (NH ₂) ₄ NQ-1,2	2,90	2,18	148

Les liaisons N-H···O sont responsables dans les quatre premières structures de l'association en 'feuillets' des molécules d'amino-4 naphtoquinone-1,2 empilées en colonnes à axes parallèles (Fig. 5).

Les structures de diéthyl et diméthyl amino-4

0.89

Fig. 1 (*suite*). (*d*) $Me_3(NH_2)_4NQ-1,2$. $H_2O_4^{\bullet}(\sigma=0,005^{+}A; 0,4^{\circ})$.

Fig. 2. Distances (Å) et angles (°). (a) (N, 2C₂H₅)₄NQ-1,2 (σ =0,004 Å; 0,3°). (b) (N, 2CH₃)₄NQ-1,2 (σ =0,004 Å; 0,3°).

•

naphtoquinone-1,2 ne présentent aucune liaison intermoléculaire caractérisée.

(iii) Liaisons particulières aux structures à inclusion

Les molécules d'inclusion, soit H_2O soit CH_3OH , participent à l'organisation structurale en couplant ces feuillets par des liaisons à caractère électrostatique ou des liaisons hydrogène. Ces liaisons hydrogène sont linéaires ou bifides selon que la molécule porte ou ne porte pas un atome d'halogène en position 3 (brome dans le cas des composés étudiés ici).

Amino-4 naphtoquinone-1,2. La molécule d'eau relie quatre molécules quinoniques appartenant à deux feuillets par: deux liaisons $W-H\cdots O(2)$ symétriques $[W\cdots O(2)=2,75 \text{ Å}]$ et deux liaisons $W-H\cdots N$ symétriques $[W\cdots N=2,88 \text{ Å}]$ (W= atome d'oxygène de la molécule d'eau).

Méthyl-3 amino-4 naphtoquinone-1,2. Chaque molécule d'eau relie deux molécules de naphtoquinone par: une liaison $W-H\cdots O(2)$ [$W\cdots O(2)=2,80$ Å; $W-H\cdots O=170^{\circ}$], et une liaison $W\cdots H-N$ [$W\cdots N=2,98$ Å; $W\cdots H-N=176^{\circ}$].

Bromo-3 amino-4 naphtoquinone-1,2-méthanol. La molécule de méthanol relie trois molécules naphtoquinoniques par: (Fig. 6) deux types de liaison hydrogène O-H···O(2) (IV) [O···O(2) = 2,80 Å], O···H(1) -N (I) [O···N = 2,86 Å] [les liaisons sont indiscutablement bifides: l'atome H(1,N) du groupement amine participe également à une liaison intramoléculaire avec le brome (H···Br = 2,56 Å, angle N-H···Br de 101°), ce qui justifie la valeur de 145° de l'angle O···H(1)-N] et une liaison de nature électrostatique entre groupement méthyle et atome de brome: Br···C=3,51, Br···H(2)=3,36, Br···H(3)=3,44, Br···H(4)=3,56 Å, angle Br···C-O=174°.

Bromo-3 amino-4 naphtoquinone-1,2 hydratée. Chaque molécule d'eau relie deux molécules de naphtoquinone par: une liaison $W-H\cdots O(2)$ [$W\cdots O(2)=2,78$ Å;

Fig. 3. Mode de recouvrement du groupe A. Exemple: Br₃(NH₂)₄NQ-1,2.H₂O.

Fig. 4. Mode de recouvrement du groupe *B*. Exemple: $Br_3(NH_2)_4NQ-1,2$.

Tableau 3. Ecarts (Å) des atomes de l'enchaînement quinonique au plan moyen du cycle phényle

	${{ m H}_{3}({ m NH}_{2})_{4}}\over {1\over 2}{{ m H}_{2}}{ m O}$	$\begin{array}{c} Me_3(NH_2)_4\\ H_2O \end{array}$	$\begin{array}{c} Br_3(NH_2)_4 \\ H_2O \end{array}$	Br ₃ (NH ₂) ₄ CH ₃ OH	$Br_3(NH_2)_4$	$(N, 2C_2H_5)_4$	(N,2CH ₃) ₄	Br ₃	Cl ₃
C(1)	0,002	-0.011	-0,003	-0,004	-0,064	-0,269	-0,223	0,031	0,020
C(2)	0,008	-0,032	-0,053	-0,028	-0,012	-0,642	-0,429	0,171	0,168
C(3)	-0,015	-0,057	-0,045	-0,059	0,010	-0,425	-0,282	0,051	0,077
C(4)	0,004	0,012	0,009	0,012	0,013	0,045	0,020	0,004	0,022
O(1)	0,021	-0,003	0,026	0,036	-0,176	-0,241	-0,270	-0,040	-0,059
O(2)	0,061	-0,009	-0,043	-0,028	0,012	-1,026	-0,642	0,330	0,359
X ₃	,	-0,113	-0,083	-0,140	0,025			0,108	0,110
N ₄	0,041	0,055	0,078	0,082	-0,066	0,437	0,243		

Tableau 4. Longueurs de liaison de l'enchaînement quinonique des dérivés aminés des naphtoquinones-1,2

	(NH ₂) ₄	Br ₃ (NH ₂) ₄	Br ₃ (NH ₂) ₄ CH ₃ OH	$\begin{array}{c} Br_3(NH_2)_4\\ H_2O \end{array}$	$\begin{array}{c} Me_3(NH_2)_4 \\ H_2O \end{array}$	$(N, 2C_2H_5)_4$	(N, 2CH ₃) ₄	l (Å)	l théorique (Å)
O(2) - C(2)	1.263	1.238	1,250	1,255	1,242	1,234	1,240	1,25	1,20
C(2) - C(3)	1,380	1,418	1,389	1,406	1,406	1,419	1,416	1,40	1,48
C(3) - C(4)	1,407	1,387	1,409	1,394	1,380	1,377	1,375	1,39	1,33
C(4) - N(4)	1,321	1,330	1,312	1,316	1,332	1,359	1,357	1,33	1,37

 $W-H\cdots O(2) = 139^{\circ}$] et une liaison $W\cdots H-N [W\cdots N = 2,86 \text{ Å}; W\cdots H-N = 121^{\circ}]$. Le caractère bifide de ces liaisons justifie les faibles valeurs des angles de liaison.

Dans toutes ces structures, il est à remarquer

l'absence de liaison de type $Br \cdots O$ habituellement observée en série naphtoquinonique halogénée. Ceci est expliqué par l'existence des liaisons hydrogène concurrentielles (Schvoerer, 1975).

Fig. 5. Enchaînement moléculaire par liaisons hydrogène. Exemple: Br₃(NH₂)₄NQ-1,2.

Fig. 6. Liaisons dans le cas des structures à inclusion. Exemple: Br₃(NH₂)₄NQ-1,2. CH₃OH.

Perturbations moléculaires

Un certain nombre de traits spécifiques des amino-4 naphtoquinone-1,2, à l'état cristallin, peuvent être dégagés de cette étude. Ces caractères permanents, exprimés en termes de structure moléculaire, sont avant tout une perturbation locale des longueurs de liaisons et aussi de la symétrie plane.

La deuxième perturbation peut être reliée sans ambiguïté à l'arrangement moléculaire. Par contre, la première déformation citée est justifiable de plusieurs explications que nous développerons dans le dernier paragraphe.

(i) Perturbation de la symétrie plane de la molécule libre de naphtoquinone

Si le cycle phényle des quatre premiers composés peut être considéré comme plan [au moins pour le seuil de probabilité (0,001) dont nous sommes convenu dans l'application du critère de Pearson], il n'en est pas de même pour les composés (V, VI) qui présentent un défaut étonnant de planéité au niveau des cycles phényles ($\chi^2 = 503$, $\chi^2 = 338$). Les distances des autres atomes du noyau carboné au plan moyen du cycle phényle peuvent être très importantes et traduisent des écarts notables à la symétrie plane (Tableau 3).

Il n'est pas douteux que la présence de deux groupements carbonyles contigus ou d'un groupement carbonyle et d'un atome encombrant, à des distances inférieures à la somme des rayons de van der Waals doit plus ou moins contribuer à cette perturbation. Mais, pour rendre compte de la diversité et de l'ampleur des déformations, il faut faire appel à un autre facteur, l'environnement.

Les deux dérivés halogénés, chloro et bromo napthoquinone-1,2 (Courseille, Gaultier, Hauw & Schvoerer, 1970) qui ont dans les cristaux le même type de recouvrement moléculaire (isomorphes) présentent une perturbation très semblable [celle-ci est très importante et affecte particulièrement le groupement C(2)-O(2)].

La molécule de bromo amino naphtoquinone qui présente le même type de recouvrement dans les cristaux à inclusion (eau-méthanol) est perturbée de façon comparable dans les deux cas. Cette remarque vaut également pour la méthyl-3 amino-4 naphtoquinone hydratée. En revanche, la déformation est très différente dans le composé sans inclusion dont le mode de recouvrement est différent.

L'influence de l'encombrement stérique est illustré par l'exemple de la diméthyl amino naphtoquinone-1,2 qui présente un étonnant écart à la planéité. Les molécules centrosymétriques superposées sont à une distance particulièrement courte (distance entre plans des noyaux carbonés $\simeq 3,10$ Å, distance entre plans des

Fig. 7. Encombrement stérique consécutif à l'organisation par recouvrement des molécules (N, 2CH₃)₄NQ-1,2.

Fig. 8. Hypothèse de résonance intermoléculaire.

Tableau 5. Perturbation des longueurs de liaisons de l'enchaînement quinonique

	Diéthyl amino NQ-1,2	Diméthyl amino NQ-1,2	l (Å)	Bromo NQ-1,2 + méthanol	l (Å) théorique
C(2) - O(2)	1,234	1,240	1,250	1,250	1,20
C(2) - C(3)	1,419	1,416	1,400	1,389	1,48
C(3) - C(4)	1,377	1,375	1,395	1,409	1,33
C(4) - N(13)	1,359	1,357	1,322	1,312	1,37

l=moyenne sur les composés présentant des liaisons H.

cycles phényles $\simeq 2,74$ Å). Le recouvrement au niveau des enchaînements quinoniques exige des distances convenables entre atomes, ce qui ne peut se réaliser que par déformation de la molécule; c'est ainsi que l'atome C(1) s'écarte fortement de l'atome C(3) dont il reste quand même à une distance exceptionnellement courte (3,28 Å) (Fig. 7).

Ces remarques permettent de conclure que les enchaînements quinoniques sont très facilement déformables. Les déformations qui peuvent parfois affecter la totalité de la molécule, sont subordonnées aux effets stériques consécutifs à l'organisation par recouvrement des molécules.

(ii) Perturbation des longueurs de liaison au niveau de l'enchaînement quinonique

L'enchaînement O(2)-C(2)-C(3)-C(4)-N(4) voit les longueurs de ses quatre liaisons modifiées très nettement par rapport aux longueurs attendues dans un tel système conjugué.

La perturbation affecte les sept molécules d'amino-4 naphtoquinone-1,2 (Tableau 4). L'arrangement observé ne rend pas compte de la présence de liaisons localisées à caractère simple ou à caractère double, les longueurs étant alternativement allongées et raccourcies. Les longueurs des liaisons C(2)-C(3) et C(3)-C(4) sont du même ordre et proches de celles observées dans un cycle phényle. La longueur de la liaison carbonyle C(2)=O(2) tend vers celle de la liaison carbone-hydroxyle. La longueur de la liaison carbone-amine $C-NH_2$ tend vers celle de la liaison carbone-imine.

Les atomes H ont été mis en évidence; toutefois, compte tenu de la précision il n'a été possible de conclure, ni à un allongement de liaisons N-H ni à une modification de la densité électronique des hydrogènes concernés.

Aucune autre liaison du cycle quinonique ne présente d'irrégularité.

$$\tilde{l}$$
(C=O) = 1,216 Å \tilde{l} (C-Br) = 1,891 Å.

C(1)–C(9) et C(4)–C(10) ont même valeur moyenne \bar{l} (C–C) = 1,478 Å. C(1)–C(2) est d'une longueur à peine inférieure à celle correspondant à la liaison entre deux atomes de carbone tétraédriques \bar{l} (C–C) = 1,519 Å.

Les différentes hypothèses quant à l'origine de cette déformation systématique en série naphtoquinonique β sont envisagées dans le paragraphe suivant.

Délocalisation électronique et liaisons H

(i) L'équilibre tautomérique semblait à l'origine l'explication la plus probable de la perturbation de l'enchaînement quinonique des naphtoquinones-1,2 aminées en position 4. En effet, la conformation observée est celle d'une molécule statistique résultante de deux molécules tautomères l'une à fonction cétone-amine l'autre à fonction hydroxyle-imine.

Au stade actuel de notre étude, nous rejetons les deux hypothèses à envisager:

- L'hypothèse d'un désordre cristallin conséquence d'un équilibre tautomérique en solution ne peut être retenue; les études de potentiel d'oxydo-réduction effectuées par Fieser & Fieser (1968) éliminant toute possibilité d'équilibre tautomérique en solution.

- L'hypothèse du passage dans le cristal d'une forme à l'autre par transfert de l'atome H, le long des liaisons H intermoléculaires ne peut non plus être retenue; toute possibilité de liaison hydrogène intermoléculaire étant supprimée par substitution des groupements méthyles ou éthyles aux atomes d'hydrogène du groupement amine, le phénomène subsiste quand même: les molécules ont toujours une conformation intermédiaire.

(ii) Aimé *et al.* (1970) abordèrent différemment le problème. Se basant sur la structure de l'amino-4 naphtoquinone-1,2 hydratée, ils supposèrent une résonance intermoléculaire.

Plus précisément, deux molécules couplées par l'intermédiaire de molécules d'eau, forment un bimère à peu près plan, dans lequel les liaisons hydrogène sont établies entre groupements donneurs et accepteurs alternés. Le phénomène de résonance, qui fait intervenir les enchaînements O(2)-C(2)-C(3)-C(4)-N(4) et les liaisons de solvatation expliqueraient l'allongement des liaisons doubles C(3)-C(4) et C(2)-O(2) et le raccourcissement des liaisons simples C(2)-C(3) et C(4)-N(4) (Fig. 8).

Dans cette explication, la présence de molécules d'eau relais et de bimères organiques plan, a un rôle prépondérant. Or la connaissance des six nouvelles organisations cristallines, très différentes les unes des autres, nous autorise à rejeter l'essentiel de cette hypothèse: d'une part, des molécules d'eau ne sont présentes que dans trois des organisations cristallines et d'autre part, les liaisons H ne contribuent que rarement à la création de bimères plans.

(iii) L'explication retenue repose sur l'existence de deux facteurs:

- L'un d'origine moléculaire, consécutif à la présence simultanée dans la molécule, d'un groupement amine et de deux dipoles contigus. La molécule est donc le siège d'une forte interaction dipolaire ainsi que d'une importante délocalisation électronique en raison de la présence sur l'atome d'azote d'un doublet libre se conjuguant avec les électrons mobiles du cycle.

- L'autre d'origine intermoléculaire, dû essentiellement à l'existence d'un réseau de fortes liaisons hydrogène.

L'analyse comparée de structures cristallines permet d'apprécier le rôle respectif de ces deux facteurs.

Les structures cristallines des diéthyl et diméthyl naphtoquinones β montrent que, en l'absence de liaison hydrogène intermoléculaire, si la perturbation des longueurs de liaison subsiste, elle est cependant bien moins prononcée que dans les cristaux présentant de fortes liaisons hydrogène (Tableau 5). De plus, l'examen des structures bromées à inclusion [où l'atome d'oxygène O(2) entre deux fois en liaison hydrogène] montre que la perturbation est plus accentuée que lorsque l'atome d'oxygène O(2) ne contracte qu'une seule liaison.

Ces observations établissent le rôle prépondérant qu'exercent les deux facteurs moléculaires que sont la présence du doublet libre sur l'atome d'azote et les interactions dipolaires. Les liaisons hydrogène, quand elles existent, ne font qu'amplifier la déformation. En conclusion, la déformation observée ne rend pas compte du phénomène de tautomérie mais d'un phénomène de résonance pour lequel la molécule peut être représentée par la superposition de formes mésomères (en particulier C-NH₂, C=N⁺H₂).

A priori, ces observations en série naphtoquinonique β sont en contradiction avec celles faites sur les dérivés de l'amino-2 naphtoquinone-1,4. En effet, bien que les molécules de cette série présentent des enchaînements O=C-C=C-N comparables et participent à des liaisons hydrogène analogues, aucune perturbation significative des longueurs de liaison n'est observée. L'explication

pourrait être, outre l'absence d'interaction dipolaire, l'empêchement à la conjugaison du doublet libre de l'atome d'azote avec les électrons du cycle, par suite de l'établissement d'une liaison hydrogène intramoléculaire entre groupement carbonyle et amine consécutifs.

Si l'importance du facteur moléculaire semble établie correctement, les rôles respectifs de l'interaction entre groupements carbonyles et du doublet libre de l'atome d'azote demandent à être précisés. Ils pourront l'être par l'étude structurale du dérivé diméthyl amino-2 naphtoquinone-1,4.

Références

- AIMÉ, S., GAULTIER, J. & HAUW, C. (1970). Acta Cryst. B26, 1597-1609.
- BECHTEL, F., GAULTIER, J., GEOFFRE, S. & HAUW, C. (1975). Cryst. Struct. Commun. 4, 221-224.
- BECHTEL, F., GAULTIER, J., HAUW, C. & CHASSEAU, D. (1975). Cryst. Struct. Commun. 4, 461–464.
- BRETON-LACOMBE, M. (1966). C. R. Acad. Sci. Paris, 263, 1129–1130.
- CHASSEAU, D. & BRAVIC, G. (1971). C. R. Acad. Sci. Paris, 272, 377-380, 1215-1218.
- CHASSEAU, D., GAULTIER, J. & HAUW, C. (1970). C. R. Acad. Sci. Paris, 270, 1452-1454, 1574-1576.
- COURSEILLE, C., GAULTIER, J., HAUW, C. & SCHVOERER, M. (1970). C. R. Acad. Sci. Paris, 270, 687-689.
- FIESER, L. & FIESER, M. (1968). Advanced Organic Chemistry. New York: Reinhold.
- GAULTIER, J. & HAUW, C. (1965). Acta Cryst. 18, 179-183.
- GAULTIER, J., HAUW, C. & BRETON-LACOMBE, M. (1969). Acta Cryst. B25, 231–237.
- SCHVOERER, M. (1975). Thèse, Bordeaux.
- STEWART, R. F., DAVIDSON, E. R. & SIMPSON, W. T. (1965). J. Chem. Phys. 42, 3175–3187.